Estimating missing data in water quality time series

Aart H Smits¹, Paul K Baggelaar² and Peter G Stoks¹
¹RIWA, Nieuwegein, Netherlands
²Icastat Consultancy, Hengelo, Netherlands
Where we are
IAWR

Umbrella organization of 3 Associations

RIWA: Netherlands

ARW: lower Germany

AWBR: upstream Germany, Switzerland

120 utilities
30 million consumers

Mission: source water quality should allow drinking water production using near-natural treatment only
Initially “Pressure group” fighting water pollution

Confronting polluters / decision makers with WQ data and demands

- Strategy: actions based on sound science / hard evidence only!
- Gradual shift from confrontation to cooperation

Several Rhine memoranda (latest 2008)

- WQ objectives for pollutants of concern
- Recommendations on pollution reduction
WQ monitoring network

- **Cooperation with Nat’l Dutch and German water authorities**
 - Harmonized program (WQ variables, methods, data exchange,…)

- **Four locations in the Dutch part of the Rhine basin**
 - German-Dutch border, intake sites

- **28 locations in total**
 - 10 main sites (mostly intakes)
 - freq ≥ 13; > 300 variables

- **Trend detection and compliance testing**
 - Legal standards & DMR Threshold values
 - Chemical & biological
Sampling sites
WQ monitoring network

- Emphasis on “emerging pollutants”
 - artificial sweeteners, anti-corrosion agents (dishwashers), fragrances, sunblocks, pharmaceuticals, foam stabilizers (fire extinguishers), insect repellers…

- DMR threshold 1 ug/L for stable, polar substances, 0.1 ug/L for biologically active substances
...emerging pollutants...
X-Ray contrast media

- High production volume, high consumption
- Very stable, very polar
- Not retained in “simple treatment”, difficult to remove in advanced treatment
- Levels well over 0.1 ug/L in Rhine basin
The original time series
The approach – 1
Box-Jenkins transfer modeling

- Existing time series of chloride at Lobith
- One year of monthly averages taken out
- Recalculation using data from upstream site (Cologne) and water discharge data at Lobith
 - Average difference ~ 10 mg/l
Chloride at Lobith: measured vs calculated
The situation
Conclusion

Results promising, however, X-ray agents unacceptable: Cologne, too, had data gaps

Additional approaches

Trial with Düsseldorf data failed: data set too small

Interpolation between Düsseldorf and Nieuwegein failed: water discharge very variable \(\rightarrow\) correlation “vague”
- input tributaries
- different bypass routes under varying discharge conditions
Situation
Neural Network approach

Available software package*, runs on pc

Input variables: X-ray agent data Düsseldorf (upstream) and Nieuwegein (downstream) and discharge data Lobith (target site, inbetween) and Nieuwegein; and X-ray agent data Nieuwegein shifted 1 sampling period

- under low flow conditions these X-ray agent data contain information about Lobith 1 sampling period earlier

* MBP 2.2 (Lopez&Ribero, 2010)
Neural Network approach

More capable of describing non-linear relationships than time series or interpolation methods
The situation
Results

Monthly average amidotrizoic acid at Lobith, measured versus calculated with neural network
Additional calculations: gap Nieuwegein

Input variables: water discharge at Lobith and Nieuwegein, X-ray agent data at Lobith and these data, one sampling period earlier

→ as before, under low flow conditions these X-ray agent data contain information about Lobith 1 sampling period earlier
Results

Monthly average amidotrizoic acid at Nieuwegein, measured versus calculated with neural network
Conclusion

- X-Ray media measurements 13 / yr for 5 years at 4 sites would cost ca $ 35000
- Insufficient data make trend assessments difficult → Lower costs but virtually useless
- Trend estimation possible by estimating missing data
- Estimated data have reasonable precision but have to be marked in the database as “calculated, not measured”
Current work

- Database contains some 4000 dataseries (variables) with real data > MDL (and some 3500 with mostly “<“)
- Around 130 dataseries missing 1 quarter year of data & some 200 missing 2 quarter years
- Cluster analysis on those series to find variables with similar behaviour
- Filling gaps in those series